算法伪代码是论文的核心之一.

需要说明输入、输出;方法 (函数) 名可写可不写, 如果被别的方法调用就必须写;需要写出主要步骤的注释;长度控制在 15-30 行;可使用数学式子或对已有数学式子的引用;不重要的步骤可以省略;一般需要进行时间、空间复杂度分析, 并写出配套的 property 以及相应的表格, 以使其更标准.在正文中分析伪代码的时候, 对多行引用应该用双连词符, 它会转成一个较长的连词符. 如: Lines 3–4 shows. Tables 4–6 同理. 两个并行的词连接起来 (等价词的复合), 也应该用 Serial–parallel. 参考文献的页码也应该用双连词符 pp. 87–99. multi-label 这里有个从属关系, 就应该用单连词符.

例子:

以下是该算法的 tex 源码:

\begin{algorithm}[!htb]

\renewcommand{\algorithmicrequire}{\textbf{Input:}}

\renewcommand{\algorithmicensure}{\textbf{Output:}}

\caption{Multi-label active learning through serial-parallel neural networks}

\label{algorithm: masp}

\begin{algorithmic}[1]

\REQUIRE

data matrix $\mathbf{X}$,

label matrix $\mathbf{Y}$ for query,

query budget $Q$,

cold-start query budget $P$,

number of representative instances $R$,

instance batch size $B_i$,

label batch size $B_l$

\ENSURE

queried instance-label pairs $\mathbf{Q}$, prediction network $\Theta$.

\STATE Initialize the serial-parallel prediction network;

\STATE $\mathbf{Q} = \emptyset$;\\

// Stage 1. Cold start.

\STATE Compute instance representativeness according to Eq. \eqref{equation: dp-representativeness};

\STATE Select the top-$R$ representative instances to reorganize the training set $\mathbf{X}$;

\STATE Update $\mathbf{Q}$ and $\mathbf{Y}'$ by querying $B_l$ labels for each of the top $\lfloor Q / B_l \rfloor$ representative instances;

\STATE Train the prediction network using $\mathbf{X}$ and $\mathbf{Y}'$;\\

// Stage 2. Main learning process.

\REPEAT

\STATE Compute $\hat{\mathbf{Y}}$ using the prediction network and Eq. \eqref{equation: label-prediction};

\STATE Compute label uncertainty according to Eq. \eqref{equation: label-uncertainty};

\STATE Query top-$B_i$ uncertain instance-label pairs to update $\mathbf{Q}$ and $\mathbf{Y}'$;

\STATE Update the prediction network using $\mathbf{X}$ and $\mathbf{Y}'$;\\

\UNTIL{($|\mathbf{Q}| \geq Q$)}

\end{algorithmic}

\end{algorithm}